Search results for "Neutron stars"

showing 10 items of 47 documents

GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences

2018

The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm…

Design sensitivityneutron star: binarygravitational radiation: stochasticAstronomyX-ray binaryGeneral Physics and AstronomyAstrophysicsAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologylocalizationGravitational wave backgroundGravitational Waves Neutron Stars Stochastic Background Virgo LIGOblack holeLIGOstochastic modelQCQBPhysicsGAMMA-RAY BURSTSSignal to noise ratioStochastic systemsBlack holesGravitational effectsarticleAstrophysics::Instrumentation and Methods for AstrophysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSING[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave sources Experimental studies of gravity Gravitational WavesGravitationBinary neutron starsX-ray bursterBinsAstrophysics::High Energy Astrophysical PhenomenaMERGERSFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesgravitational radiation: direct detectionBinary pulsarNeutron starsSTAR-FORMATIONPhysics and Astronomy (all)General Relativity and Quantum CosmologyBinary black holebinary: coalescence0103 physical sciencesFrequency bandsddc:530RATESINTERFEROMETERS010306 general physicsAstrophysics::Galaxy AstrophysicsNeutronsGravitational Waves010308 nuclear & particles physicsGravitational waveVirgogravitational radiation: backgroundgravitational radiationAstronomyNeutron Stars530 Physikbinary: compactsensitivityStarsLIGObackground: stochasticEVOLUTIONsignal noise ratioVIRGOPhysics and Astronomyblack hole: binarygravitational radiation: emissionStellar black holeStochastic BackgroundDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikHIGH-REDSHIFTneutron star: coalescencePhysical Review Letters
researchProduct

Towards modelling the central engine of short GRBs

2011

Numerical relativity simulations of non-vacuum spacetimes have reached a status where a complete description of the inspiral, merger and post-merger stages of the late evolution of close binary neutron systems is possible. Determining the properties of the black-hole-torus system produced in such an event is a key aspect to understand the central engine of short-hard gamma-ray bursts (sGRBs). Of the many properties characterizing the torus, the total rest-mass is the most important one, since it is the torus' binding energy which can be tapped to extract the large amount of energy necessary to power the sGRB emission. In addition, the rest-mass density and angular momentum distribution in t…

PhysicsHistoryAngular momentumAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryAstronomyTorusAstrophysicsComputer Science ApplicationsEducationBlack holeStarsNeutron starNumerical relativityTheory of relativitymagnetohydrodynamics binary neutron stars gravitational waves
researchProduct

All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems

2021

Rapidly spinning neutron stars are promising sources of continuous gravitational waves. Detecting such a signal would allow probing of the physical properties of matter under extreme conditions. A significant fraction of the known pulsar population belongs to binary systems. Searching for unknown neutron stars in binary systems requires specialized algorithms to address unknown orbital frequency modulations. We present a search for continuous gravitational waves emitted by neutron stars in binary systems in early data from the third observing run of the Advanced LIGO and Advanced Virgo detectors using the semicoherent, GPU-accelerated, binaryskyhough pipeline. The search analyzes the most s…

binary: orbitneutron star: binaryPhysics and Astronomy (miscellaneous)Astronomybinary [neutron star]AstrophysicsGravitational Waves; LIGO (Observatory); Neutron Stars01 natural sciencesneutron starsGeneral Relativity and Quantum CosmologyMonte Carlo: Markov chainPhysics Particles & Fieldsbinary starsbinary systemsBinary SystemsLIGOgravitational waveQCQBpulsarastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicseducation.field_of_studySettore FIS/03Physicsorbit [binary]General relativityPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical Phenomenabinary stardata analysis methodsensitivity [detector]General relativitygr-qcfrequency [modulation]Populationneutron star: spinFOS: Physical sciencesalternative theories of gravityMarkov chain [Monte Carlo]General Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsGravitational Waves Neutron Stars Binary Systems LIGO VirgoLIGO (Observatory)emission [gravitational radiation]Pulsarbinary: coalescence0103 physical sciencesBinary starddc:530spin [neutron star]background [gravitational radiation]010306 general physicseducationSTFCOrbital elementsGravitational WavesScience & Technology010308 nuclear & particles physicsGravitational waveVirgogravitational radiation: backgroundmodulation: frequencyRCUKNeutron StarsLIGOgravitational radiation detectordetector: sensitivityNeutron starVIRGOgravitational radiation: emissionDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikcoalescence [binary][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]binary stars; neutron stars
researchProduct

Multimessenger Binary Mergers Containing Neutron Stars: Gravitational Waves, Jets, and γ-Ray Bursts

2021

Neutron stars (NSs) are extraordinary not only because they are the densest form of matter in the visible Universe but also because they can generate magnetic fields ten orders of magnitude larger than those currently constructed on earth. The combination of extreme gravity with the enormous electromagnetic (EM) fields gives rise to spectacular phenomena like those observed on August 2017 with the merger of a binary neutron star system, an event that generated a gravitational wave (GW) signal, a short γ-ray burst (sGRB), and a kilonova. This event serves as the highlight so far of the era of multimessenger astronomy. In this review, we present the current state of our theoretical understand…

Astrofísicalcsh:Astronomymedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsKilonova01 natural sciencesneutron starslcsh:QB1-9910103 physical sciencesNeutronmultimessenger astronomy010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsmedia_commonPhysics010308 nuclear & particles physicsGravitational wavelcsh:QC801-809Astronomy and Astrophysicsshort gamma-ray burstsnumerical relativityblack holesUniverseNumerical relativityNeutron starlcsh:Geophysics. Cosmic physicsgravitational wavesAstronomiaGamma-ray burstEvent (particle physics)Frontiers in Astronomy and Space Sciences
researchProduct

Spectral Evolution of Scorpio X‐1 along its Color‐Color Diagram

2007

We analyze a large collection of RXTE archive data of the bright X‐ray source Scorpius X‐1 in order to study the broadband spectral evolution of the source for different values of the inferred mass accretion rate by selecting energy spectra from its Color‐Color Diagram. We model the spectra with the combination of two absorbed components: a soft thermal component, which can be interpreted as thermal emission from an accretion disk, and a hybrid Comptonization component, which self‐consistently includes the Fe Kα fluorescence line and the Compton reflected continuum. The presence of hard emission in Scorpius X‐1 has been previously reported, however, without a clear relation with the accreti…

PhysicsAccretion (meteorology)Astrophysics::High Energy Astrophysical PhenomenaContinuum (design consultancy)X-ray: generalCompton scatteringX-ray binaryColor–color diagramAstrophysicsindividual: Scorpio X-1; Stars: neutron stars; X-ray: general; X-ray: spectrum; X-ray: stars [Accretion discs; Stars]X-ray: spectrumAstronomical spectroscopySpectral lineStars: neutron starX-ray: starsAccretion discStars: individual: Scorpio X-1Astrophysics::Galaxy AstrophysicsLine (formation)AIP Conference Proceedings
researchProduct

Timing of accreting millisecond pulsars

2008

We review recent results from the X-ray timing of accreting millisecond pulsars in LMXBs. This is the first time a timing analysis is performed on accreting millisecond pulsars, and for the first time we can obtain information on the behavior of a very fast pulsar subject to accretion torques. We find both spin-up and spin-down behaviors, from which, using available models for the accretion torques, we derive information on the mass accretion rate and magnetic field of the neutron star in these systems. We also report here the first measure of the orbital period derivative for an accreting millisecond pulsar, derived for SAX J1808.4-3658 over a timespan of more 7 years.

PhysicsAccretion and accretion disks Pulsars Neutron stars X-ray binaries Magnetic and electric fieldAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryStatic timing analysisAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicspolarization of starlightOrbital periodAccretion (astrophysics)Neutron starSettore FIS/05 - Astronomia E AstrofisicaPulsarMillisecond pulsarAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Galaxy AstrophysicsX-ray pulsarAIP Conference Proceedings
researchProduct

Properties of the Binary Neutron Star Merger GW170817

2019

On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which ar…

AstrofísicaGravitacióneutron star: binaryAstronomyGeneral Physics and AstronomyBinary numberAstrophysicsELECTROMAGNETIC COUNTERPARTspin01 natural sciencesGeneral Relativity and Quantum CosmologyGRAVITATIONAL-WAVESlocalization010305 fluids & plasmasGravitational wave detectorsEQUATIONenergy: densityLIGOGEO600QCastro-ph.HESettore FIS/01PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)GAMMA-RAY BURSTSSettore FIS/05PhysicsEquations of stateGravitational effectsGravitational-wave signalsDeformability parameterAmplitudePhysical SciencesPhysical effectsINSPIRALING COMPACT BINARIES[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Spectral energy densityAstrophysics - High Energy Astrophysical PhenomenaPARAMETER-ESTIMATIONBinary neutron starsdata analysis methodgr-qcQC1-999Physics MultidisciplinaryFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesBayesianGravimeterselectromagnetic field: productionPhysics and Astronomy (all)galaxy: binary0103 physical sciencesddc:530SDG 7 - Affordable and Clean Energy010306 general physicsgravitational radiation: frequencySTFCAstrophysics::Galaxy Astrophysicsequation of stateLIGHT CURVESEquation of stateScience & Technology/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energySpinsgravitational radiationRCUKSpectral densityKILONOVATRANSIENTSbinary: compactStarsGEO600GalaxyLIGOgravitational radiation detectorNeutron starVIRGOPhysics and Astronomygravitational radiation: emissionRADIATIONBayesian AnalysisDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The Large Observatory for X-ray Timing (LOFT)

2012

High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultra-dense matter and to black hole masses and spins. A 10 m^2-class instrument in combination with good spectral resolution is required to exploit the relevant diagnostics and answer two of the fundamental questions of the European Space Agency (ESA) Cosmic Vision Theme "Matter under extreme conditions", namely: does matter orbiting close to the event horizon follow the predictions of general relativity? What is the equation of state of matter in neutron stars? The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M…

Event horizonX-ray timingMission7. Clean energy01 natural sciencesneutron starsT175 Industrial research. Research and developmentBINARIESSettore FIS/05 - Astronomia E AstrofisicaALICESILICON DRIFT DETECTORObservatoryEQUATIONneutron star010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsMissions X-ray timing compact objects black holes neutron starscompact objectsAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaPROPORTIONAL COUNTER[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Active galactic nucleusCosmic VisionX-ray astronomy; high time variabilityAstrophysics::High Energy Astrophysical Phenomenablack holes; compact objects; Missions; neutron stars; X-ray timing;FOS: Physical sciencesMissionsX-ray astronomy0103 physical sciencesOSCILLATIONSInstrumentation and Methods for Astrophysics (astro-ph.IM)Supermassive black holehigh time variability010308 nuclear & particles physicsAstronomyCONSTRAINTSAstronomy and Astrophysicsblack holesGalaxyBlack holeNeutron starSpace and Planetary ScienceQB460-466 AstrophysicsDISCOVERYBLACK-HOLESUPERAGILE
researchProduct

Tests of General Relativity with GW170817

2019

The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in presence of matter. In this paper, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime. Bounds on modified dispersion of gravitational waves are obtained; in combination with information from the observed electromagnetic counterpart we can also constrain effects due to large extra dimensions. Finally, the polari…

Dewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaftenneutron star: binaryAstronomyTestingGravitational WaveGeneral Physics and AstronomyAstrophysics01 natural sciencesGeneral Relativity and Quantum Cosmologystrong fieldddc:550general relativityLIGOQCSettore FIS/01PhysicsPhysicsGravitational effectsarticlePolarization (waves)Gravitational-wave signalsExtra dimensionsgravitational wavesPhysical SciencesExtra dimensions[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Large extra dimensiondispersionBinary neutron starsgravitational radiation: polarizationGeneral RelativityGeneral relativitygr-qcPhysics MultidisciplinaryGRAVITATIONAL-WAVE OBSERVATIONSFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)gravitational wavesblack holesGravity wavesMASSgravitational radiation: direct detectionGravitation and Astrophysicselectromagnetic field: productionRelativityGeneral Relativity and Quantum CosmologyDipole radiationsGRAVITYTests of general relativitygravitation: weak field0103 physical sciencesddc:530High Energy Physicscapture010306 general physicsGravitational Wave; General RelativitySTFCradiation: dipolepolarizationScience & TechnologyStrong fieldGravitational wavegravitational radiationRCUKbinary: compactgravitational radiation detectorLIGONeutron starVIRGODewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikNewtonianshigher-dimensional
researchProduct

Accurate evolutions of unequal-mass neutron-star binaries: properties of the torus and short GRB engines

2010

We present new results from accurate and fully general-relativistic simulations of the coalescence of unmagnetized binary neutron stars with various mass ratios. The evolution of the stars is followed through the inspiral phase, the merger and prompt collapse to a black hole, up until the appearance of a thick accretion disk, which is studied as it enters and remains in a regime of quasi-steady accretion. Although a simple ideal-fluid equation of state with \Gamma=2 is used, this work presents a systematic study within a fully general relativistic framework of the properties of the resulting black-hole--torus system produced by the merger of unequal-mass binaries. More specifically, we show…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics and Astronomy (miscellaneous)numerical relativity binary neutron stars gravitational wavesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesTorusAstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum CosmologyAccretion (astrophysics)BaryonGravitationBlack holeStarsNeutron starAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burstAstrophysics::Galaxy Astrophysics
researchProduct